

Quantitative Analysis of Nanoparticles in Complex Biological Matrices: Insights from Preclinical Studies

Akshada Adhikrao Sapkal^{1*}, Archana Shivaling Khilare¹, Kasbe Manisha Kantilal², Mate Trupti Tulshidas², Shinde Yogita Balasaheb¹

¹Gulabrao Patil College of Pharmacy, Miraj, Pin -416410

²Samarth College of Pharmacy, Belhe (Bangarwadi), Pin -412410

*Corresponding Author E-mail: akshadaborhade2018@gmail.com

ABSTRACT

Nanoparticles (NPs) have emerged as crucial agents in biomedical applications, including drug delivery, imaging, and diagnostics. Accurate quantification of nanoparticles in complex biological matrices, such as blood, tissue, and organs, is essential for understanding their biodistribution, pharmacokinetics, and toxicological profiles. This review comprehensively examines analytical methodologies employed in preclinical animal studies for nanoparticle quantification, highlighting their advantages, limitations, and suitability for different nanoparticle types. Key findings indicate that while techniques like inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectroscopy (AAS), and fluorescence-based imaging provide sensitive and reliable results, challenges persist in matrix interferences, sample preparation, and detection limits. The review emphasizes the importance of methodological standardization and proposes future directions to enhance quantitative accuracy, reproducibility, and translational relevance.

Key Words:

Nanoparticles, Quantification, Biological Matrices, ICP-MS, AAS, Fluorescence Imaging, Preclinical Studies, Biodistribution, Pharmacokinetics, Toxicology Article History:

Received on Aug 22, 2025

Revised on Sep 24, 2025

Accepted on Oct 11, 2025

Published on Oct 20, 2025

DOI: <https://doi.org/10.64062/IJPCAT.Vol1.Issue5.3>

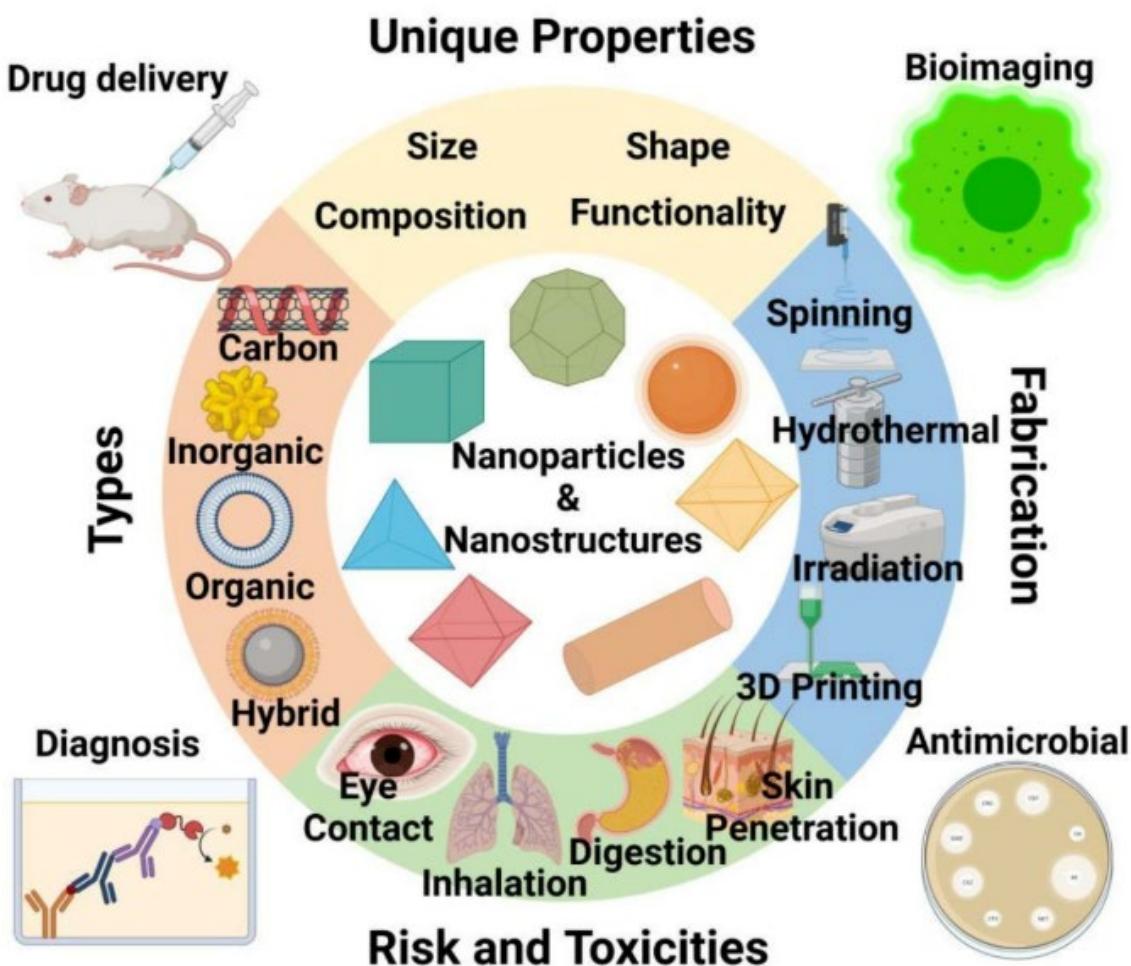
1. INTRODUCTION

Nanoparticles (NPs), defined as materials with dimensions ranging from 1 to 100 nanometers, possess unique physicochemical properties, including high surface area-to-volume ratios, tunable surface chemistry, and size-dependent optical and magnetic behaviors. These properties make nanoparticles highly versatile for diverse applications in medicine, environmental science, and toxicology¹. In biomedical contexts, nanoparticles are increasingly used for targeted drug delivery, imaging, biosensing, and diagnostics, allowing precise

therapeutic interventions and improved clinical outcomes. In environmental and toxicological studies, nanoparticles serve as models to understand interactions with biological systems and potential ecological impacts.

The rapid advancement in nanotechnology has led to the development of an array of nanoparticles, including metallic (e.g., gold, silver, iron oxide), polymeric, lipid-based, and hybrid nanostructures². Despite their promising applications, the safety, efficacy, and pharmacokinetic profiles of these nanomaterials are highly dependent on their distribution, accumulation, and clearance in biological systems. Therefore, accurate and reproducible quantification of nanoparticles in complex biological matrices, such as blood, serum, tissues, and organs, is critical. Measurement challenges arise from the complexity of biological matrices, matrix interferences, sample preparation requirements, and the diverse physical and chemical nature of nanoparticles³.

1.1. Background of the study


With the growing use of nanoparticles in therapeutics, diagnostics, and environmental applications, understanding their *in vivo* behavior has become a central concern. Nanoparticles possess unique physicochemical properties, such as high surface area, tunable surface chemistry, and size-dependent optical and magnetic characteristics, which allow them to interact with biological systems in ways that conventional materials cannot⁴. These interactions are complex and multifactorial, involving adsorption of biomolecules on particle surfaces (formation of a “protein corona”), cellular uptake mechanisms, and tissue-specific accumulation. Such interactions can significantly influence biodistribution, pharmacokinetics, toxicity, and overall therapeutic efficacy, sometimes leading to unexpected biological responses.

Nanoparticles can interact with proteins, cells, and tissues in unpredictable ways, potentially triggering immune responses, oxidative stress, or cytotoxicity. For example, metallic nanoparticles like silver or gold can accumulate in the liver, spleen, or kidneys, where they may elicit oxidative damage or disrupt normal organ function. Similarly, polymeric or lipid-based nanoparticles may undergo enzymatic degradation or alter cellular uptake pathways, influencing their therapeutic performance. These complex interactions make it imperative to precisely monitor and quantify nanoparticles in biological systems to ensure safety and efficacy⁵.

Traditional analytical methods, including spectroscopy, chromatography, and electron microscopy, although highly sensitive, often face challenges in detecting and quantifying nanoparticles in complex biological matrices. Endogenous biomolecules, such as proteins, lipids, and salts, can interfere with measurements, leading to inaccurate or inconsistent results. Additionally, these methods often require sophisticated instrumentation, time-consuming sample preparation, and highly skilled operators, which limit their widespread applicability in routine preclinical and clinical studies⁶.

Furthermore, the lack of standardized methodologies for nanoparticle quantification contributes to variability in experimental outcomes, making it difficult to compare data across different laboratories, animal models, or clinical trials⁷. Differences in sample handling, extraction protocols, and analytical techniques can result in significant discrepancies in

reported nanoparticle concentrations and distribution patterns. This variability poses a major challenge for regulatory approval, risk assessment, and the translation of nanoparticle-based therapeutics from bench to bedside.

Figure 1: Overview of Nanoparticles and Nanostructures: Types, Properties, Fabrication Methods, Applications, and Toxicity Risks

1.2. Objectives of this Review:

1. To summarize the current analytical techniques for quantifying nanoparticles in complex biological matrices.
2. To critically evaluate the strengths, limitations, and applicability of these methods.
3. To identify knowledge gaps and suggest future research directions for preclinical studies.

1.3. Importance of the Topic:

The quantification of nanoparticles in biological systems is not only fundamental for understanding their pharmacokinetics, biodistribution, and clearance but is also crucial for assessing safety and potential toxicity. In the absence of reliable analytical methodologies, preclinical studies may produce inconsistent or misleading data, limiting the translational relevance of findings to human applications⁸. Accurate nanoparticle quantification supports the development of safer, more effective nanomedicines, informs dose optimization, and aids

regulatory evaluation. Furthermore, standardized and validated analytical approaches facilitate cross-study comparisons and accelerate the translation of nanoparticle-based therapies from the laboratory to clinical and environmental applications.

Given the growing reliance on nanotechnology in biomedical research and therapeutics, this review addresses a critical need by consolidating methodological insights, evaluating their applicability, and providing a roadmap for future preclinical studies⁹.

2. ANALYTICAL TECHNIQUES FOR NANOPARTICLE QUANTIFICATION

Accurate quantification of nanoparticles in biological matrices is critical for understanding their biodistribution, pharmacokinetics, and potential toxicity in preclinical studies. Such quantification allows researchers to determine how nanoparticles are absorbed, distributed, metabolized, and excreted in living organisms, providing essential information for designing safe and effective therapeutic interventions. In addition, precise measurement is necessary to evaluate potential off-target effects, tissue accumulation, and long-term toxicity, which are pivotal for regulatory approval and risk assessment¹⁰.

Several analytical techniques are commonly employed for nanoparticle quantification, each offering unique advantages and limitations. Techniques such as inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS) provide high sensitivity and accuracy for detecting metallic nanoparticles but often require extensive sample preparation and sophisticated instrumentation. Optical methods, including UV-Vis spectroscopy and fluorescence-based assays, allow rapid and non-destructive analysis but may suffer from interference from biological molecules¹¹. Electron microscopy and dynamic light scattering (DLS) can provide detailed information on nanoparticle size, shape, and aggregation state, yet these methods are time-consuming and not always suitable for routine quantification in complex biological samples. Chromatographic techniques, such as high-performance liquid chromatography (HPLC), are useful for separating nanoparticles from biological components, but they may require specialized derivatization or labeling steps¹².

Overall, the selection of an appropriate analytical method depends on the type of nanoparticle, the complexity of the biological matrix, and the specific information required. The ongoing development of hybrid and multi-modal analytical approaches aims to overcome existing limitations, enabling more accurate, reproducible, and high-throughput quantification of nanoparticles in preclinical and environmental studies.

2.1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is one of the most sensitive and widely utilized analytical techniques for the detection and quantification of metal-based nanoparticles. Its exceptional sensitivity allows for the detection of trace metal concentrations in complex biological matrices, such as blood, serum, tissues, and organs, making it particularly well-suited for biodistribution studies of nanoparticles like gold, silver, and iron oxide in preclinical rodent models¹³. By providing precise measurements of metal content, ICP-MS enables researchers to monitor the accumulation, clearance, and potential bioaccumulation

of nanoparticles, which is essential for evaluating their safety, pharmacokinetics, and therapeutic efficacy.

Despite its high sensitivity and accuracy, ICP-MS has certain limitations. The technique typically requires extensive and meticulous sample preparation, including digestion of biological matrices, which can be time-consuming and may introduce potential sources of contamination or analyte loss. Additionally, the presence of complex matrix components can cause spectral or non-spectral interferences, which may affect the reliability of quantitative measurements unless appropriate correction strategies are applied¹⁴. Another limitation of ICP-MS is that, while it provides elemental composition and concentration, it does not offer information on the physical characteristics of nanoparticles, such as size, shape, surface morphology, or aggregation state. These parameters are often critical for understanding nanoparticle behavior in biological systems, including cellular uptake, tissue distribution, and interaction with proteins. Therefore, ICP-MS is frequently used in combination with complementary techniques, such as electron microscopy or dynamic light scattering, to obtain a more comprehensive understanding of nanoparticle characteristics and their biological interactions.

2.2. Atomic Absorption Spectroscopy (AAS)

Atomic Absorption Spectroscopy (AAS) is a widely used, cost-effective analytical technique for quantifying metal nanoparticles in biological samples¹⁵. It is particularly suitable for detecting individual metal nanoparticles, such as lead, cadmium, and silver, in tissues like the liver and kidneys, where these metals tend to accumulate. AAS operates on the principle of measuring the absorption of light by free atoms in the gaseous state, providing good sensitivity and specificity for single-element detection. This makes it a valuable tool for toxicological studies and monitoring metal exposure in preclinical models.

However, AAS has notable limitations. One significant drawback is its restriction to single-element analysis, which makes simultaneous multi-element quantification challenging and time-consuming. Additionally, AAS is not suitable for the detection of non-metal nanoparticles, such as polymeric or lipid-based nanomaterials, limiting its applicability in broader nanoparticle research¹⁶. The technique also typically requires sample digestion to convert solid biological matrices into a suitable form for analysis, which can introduce potential sources of error or analyte loss. Despite these limitations, AAS remains a practical and accessible method for targeted studies of metal-based nanoparticles, especially in laboratories with limited access to more advanced instrumentation.

2.3. Fluorescence-Based Imaging

Fluorescence imaging is a powerful analytical technique that involves labeling nanoparticles with fluorescent dyes or fluorophores, enabling the visualization and tracking of nanoparticles within biological systems. This approach allows researchers to determine the spatial distribution of nanoparticles in tissues, organs, or even at the cellular and subcellular levels, providing valuable insights into biodistribution, uptake mechanisms, and targeting efficiency. Fluorescence imaging is particularly well-suited for polymeric, liposomal, and other non-

metallic nanoparticles in preclinical murine models, where it facilitates semi-quantitative analysis and real-time monitoring of nanoparticle behavior *in vivo*.

Despite its versatility and visual advantages, fluorescence imaging has several limitations that can affect data accuracy and interpretation¹⁷. One significant challenge is photobleaching, in which prolonged exposure to excitation light leads to the gradual loss of fluorescent signal, potentially compromising long-term imaging studies. Additionally, endogenous tissue autofluorescence can interfere with the detection of labeled nanoparticles, resulting in background noise and reduced sensitivity. The labeling process itself may also alter the physicochemical properties of nanoparticles, potentially influencing their biodistribution or cellular interactions. Furthermore, fluorescence imaging typically provides semi-quantitative rather than absolute concentration measurements, requiring careful calibration and complementary analytical methods for accurate quantification. Despite these challenges, fluorescence imaging remains an indispensable tool for investigating the *in vivo* behavior of nanoparticles, especially when combined with other quantitative techniques such as ICP-MS or electron microscopy to provide a comprehensive understanding of nanoparticle dynamics.

2.4. Electron Microscopy (TEM, SEM)

Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) are high-resolution imaging techniques that provide detailed visual information about nanoparticles, including their morphology, size, aggregation state, and subcellular localization. TEM allows visualization of nanoparticles at the nanometer scale, making it possible to observe internal structures and interactions with cellular organelles, whereas SEM provides detailed three-dimensional surface images, useful for examining particle shape and surface topology. These techniques are invaluable for confirming nanoparticle distribution in specific organs and tissues in animal models, verifying particle integrity after administration, and studying interactions with cellular components, which cannot be assessed by purely quantitative methods like ICP-MS or AAS¹⁸.

Despite their high-resolution capabilities, TEM and SEM have several limitations. Sample preparation is labor-intensive and requires specialized skills, including fixation, dehydration, embedding, and sectioning for TEM, or coating for SEM, which may alter the native structure of nanoparticles or tissues. Both techniques also provide information from a relatively small sampling area, limiting their ability to represent the overall distribution of nanoparticles across entire tissues or organs. Additionally, TEM and SEM are less suitable for large-scale quantitative analysis, as the methods primarily generate qualitative or semi-quantitative data. Consequently, these imaging techniques are often used in combination with quantitative analytical methods, such as ICP-MS or fluorescence imaging, to achieve a more comprehensive understanding of nanoparticle biodistribution, accumulation, and biological interactions¹⁹.

3. Sample Preparation Techniques

- **Enzymatic Digestion:** This method is commonly used to break down tissues while preserving the structural integrity of nanoparticles. Specific enzymes, such as proteases or lipases, are employed to selectively degrade proteins, lipids, and other cellular

components without altering the nanoparticles. Enzymatic digestion is particularly useful for delicate or polymeric nanoparticles that could be damaged by harsh chemical treatments.

- **Acid Digestion:** Acid digestion is widely applied for metal-based nanoparticles. Strong acids, often combined with heat or microwave assistance, dissolve the biological matrix completely, releasing the metal ions from nanoparticles. This facilitates accurate elemental analysis using techniques such as ICP-MS or AAS. Acid digestion ensures high recovery of metals but requires careful handling to prevent contamination or loss of sample.
- **Ultrafiltration & Centrifugation:** These physical separation methods are used to isolate nanoparticles from biological fluids like blood, serum, or cell culture media. Ultrafiltration allows selective retention of nanoparticles based on size while removing smaller molecules or soluble components. Centrifugation concentrates nanoparticles by sedimenting them under high-speed rotation, enabling further quantitative or qualitative analysis. These methods are often combined with chemical digestion or analytical techniques to improve accuracy and reproducibility.

Author Name	Topic Covered	Research Study Title
Mattarozzi, M., Suman, M., Cascio, C., Calestani, D., Weigel, S., Undas, A., & Peters, R. (2017) ²⁰	Characterization and quantification of nanoparticles in food and beverages	Analytical approaches for the characterization and quantification of nanoparticles in food and beverages. <i>Analytical and Bioanalytical Chemistry</i> , 409(1), 63-80
Laborda, F., Bolea, E., Cepriá, G., Gómez, M. T., Jiménez, M. S., Pérez-Arantegui, J., & Castillo, J. R. (2016) ²¹	Detection and quantification of inorganic engineered nanomaterials in complex samples	Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. <i>Analytica Chimica Acta</i> , 904, 10-32
Titus, D., Samuel, E. J. J., & Roopan, S. M. (2019) ²²	Nanoparticle characterization techniques in green synthesis	Nanoparticle characterization techniques. In <i>Green synthesis, characterization and applications of nanoparticles</i> (pp. 303-319). Elsevier
Modena, M. M., Rühle, B., Burg, T. P., & Wuttke, S. (2019) ²³	Parameters and methods for nanoparticle characterization	Nanoparticle characterization: what to measure? <i>Advanced Materials</i> , 31(32), 1901556
Gondikas, A., von der Kammer, F., Kaegi, R., Borovinskaya, O., Neubauer, E., Navratilova, J., ... & Hofmann, T. (2018) ²⁴	Detection and quantification of TiO ₂ engineered nanoparticles in surface waters	Where is the nano? Analytical approaches for the detection and quantification of TiO ₂ engineered nanoparticles in surface waters. <i>Environmental Science: Nano</i> , 5(2), 313-326

4. THEMATIC ANALYSIS

Understanding the behavior of nanoparticles in biological systems requires not only accurate quantification but also a thorough evaluation of their distribution, pharmacokinetics, and potential toxicity²⁵. Preclinical animal studies play a critical role in providing these insights, as they allow researchers to investigate how nanoparticles interact with different tissues, organs, and cellular systems under controlled experimental conditions. Such studies reveal patterns of accumulation, clearance, and biodistribution, helping to identify target and off-target sites, as well as potential long-term retention in organs such as the liver, spleen, kidneys, and lungs.

Additionally, preclinical studies enable the correlation of nanoparticle physicochemical properties—such as size, shape, surface charge, composition, and surface functionalization—with their in vivo behavior and biological effects. For instance, smaller nanoparticles often exhibit enhanced tissue penetration and cellular uptake, whereas surface modifications, like PEGylation, can improve circulation time and reduce recognition by the immune system. These insights are crucial for optimizing nanoparticle design for therapeutic efficacy while minimizing adverse effects.

In this section, we focus on three major themes that are central to understanding nanoparticle behavior in vivo²⁶. First, **metal-based nanoparticles**, including gold, silver, and iron oxide, are discussed in terms of their biodistribution, detection methods, and organ-specific accumulation. Second, **polymeric and lipid-based nanoparticles**, which are increasingly used for drug delivery and imaging, are evaluated with respect to their pharmacokinetics, tissue targeting, and compatibility with biological systems. Finally, the section addresses **toxicological assessment**, summarizing key findings on nanoparticle-induced oxidative stress, cytotoxicity, immunogenicity, and organ-specific toxicity. By integrating these themes, this discussion provides a comprehensive overview of current knowledge, highlights methodological challenges, and identifies avenues for future research aimed at improving the safety, efficacy, and translational potential of nanoparticle-based applications²⁷.

4.1. Metal-Based Nanoparticles

Metal-based nanoparticles, including gold, silver, and iron oxide, have attracted significant attention in biomedical research due to their unique optical, magnetic, and catalytic properties, which enable applications in imaging, diagnostics, drug delivery, and hyperthermia therapy. Preclinical animal studies have consistently shown that these nanoparticles tend to accumulate predominantly in organs of the reticuloendothelial system (RES), particularly the liver, spleen, and kidneys. This biodistribution pattern reflects the body's intrinsic clearance mechanisms, where macrophages and other phagocytic cells recognize, internalize, and sequester foreign particles from circulation, often leading to prolonged retention in RES organs²⁸.

The in vivo fate of metal-based nanoparticles is strongly influenced by their physicochemical characteristics²⁹. For instance, smaller nanoparticles generally exhibit deeper tissue penetration and more rapid systemic distribution, whereas larger particles are more readily recognized and cleared by macrophages. Surface charge and coating materials, such as polyethylene glycol (PEG) or proteins, can modulate circulation time, reduce opsonization, and alter organ-specific accumulation. Studies employing highly sensitive analytical techniques, including Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Atomic Absorption Spectroscopy (AAS),

have quantitatively measured metal content in tissues, providing insights into organ-specific accumulation levels, clearance kinetics, and dose-dependent biodistribution³⁰.

Understanding these distribution patterns is critical for optimizing the therapeutic potential of metal-based nanoparticles while minimizing potential toxicity³¹. Excessive accumulation in the liver or spleen can lead to oxidative stress, inflammation, or cytotoxicity, emphasizing the need for careful design and surface functionalization. Furthermore, knowledge of biodistribution informs dosing strategies, administration routes, and safety assessments, which are essential for translating preclinical findings into clinical applications. Overall, metal-based nanoparticles exemplify the importance of integrating physicochemical design with comprehensive in vivo evaluation to achieve safe and effective biomedical outcomes³².

4.2. Polymeric and Lipid-Based Nanoparticles

Polymeric nanoparticles, such as poly(lactic-co-glycolic acid) (PLGA) and chitosan, along with lipid-based nanoparticles, including liposomes and solid lipid nanoparticles, are extensively utilized in drug delivery applications due to their inherent biocompatibility, biodegradability, and ability to encapsulate a wide range of therapeutic agents, including small molecules, proteins, and nucleic acids³³. These nanoparticles offer controlled release profiles, protection of labile drugs from degradation, and the potential for targeted delivery, making them highly attractive for both systemic and localized therapeutic applications³⁴.

In preclinical animal models, techniques such as fluorescence imaging and radiolabeling are commonly employed to track the in vivo behavior of these nanoparticles. Fluorescent dyes or radiolabels enable real-time monitoring of circulation kinetics, tissue-specific accumulation, and clearance pathways, providing critical insights into their pharmacokinetic profiles. Such studies have demonstrated that polymeric and lipid-based nanoparticles often exhibit initial circulation in the bloodstream followed by gradual uptake in the liver, spleen, and, in some cases, tumor tissues, depending on particle size, surface charge, and hydrophilicity³⁵.

Surface modification strategies, including PEGylation or attachment of targeting ligands (e.g., antibodies, peptides), have been shown to significantly influence biodistribution patterns³⁶. PEGylation, for example, can reduce opsonization and uptake by the reticuloendothelial system (RES), prolonging circulation time and enhancing the probability of reaching target tissues. Similarly, ligand-mediated targeting can enhance accumulation in specific organs, tumors, or cellular compartments, improving therapeutic efficiency and minimizing off-target effects. These findings underscore the importance of rational nanoparticle design, where physicochemical properties and surface engineering are carefully optimized to achieve desired in vivo behavior. Ultimately, preclinical insights into the pharmacokinetics and biodistribution of polymeric and lipid-based nanoparticles guide the development of safer and more effective drug delivery systems, facilitating their translation from bench to bedside³⁷.

4.3. Toxicological Assessment

Toxicological evaluation of nanoparticles in animal models is essential to determine safe dosage ranges and identify potential adverse effects. Studies reveal that certain nanoparticles exhibit dose-dependent toxicity, affecting liver and kidney function, inducing oxidative stress, or triggering inflammatory responses. Accurate quantification of nanoparticles in tissues using ICP-MS, AAS, or fluorescence-based methods is critical for correlating dose with biological

effects. Furthermore, particle size, composition, and surface chemistry influence toxicity profiles, emphasizing the need for careful preclinical evaluation before advancing to translational applications. Integrating quantitative biodistribution data with toxicity assessment enhances understanding of nanoparticle safety and informs regulatory guidelines for biomedical use³⁸.

5. DISCUSSION

The reviewed studies collectively demonstrate that, although a variety of analytical techniques are available for the quantification of nanoparticles in biological systems, each method possesses inherent limitations that must be carefully considered³⁹. Matrix interferences, arising from endogenous proteins, lipids, salts, and other biomolecules, can significantly affect the accuracy and reproducibility of measurements, particularly in complex tissues such as liver, kidney, or blood. Additionally, many techniques require extensive sample processing, including digestion, labeling, or extraction steps, which are time-consuming and may introduce potential sources of error, analyte loss, or structural alterations to the nanoparticles. Sensitivity thresholds also vary between methods; while ICP-MS and AAS offer high sensitivity for metal-based nanoparticles, they are unsuitable for non-metallic or hybrid nanoparticles, whereas fluorescence imaging provides spatial information but is semi-quantitative and prone to issues such as photobleaching and tissue autofluorescence⁴⁰.

5.1. Implications:

- Guides regulatory assessments and compliance for biomedical, pharmaceutical, and environmental applications.
- Enhances the translational potential of nanoparticles from preclinical studies to clinical or industrial use.
- Facilitates accurate evaluation of biodistribution, pharmacokinetics, and clearance *in vivo*.
- Reduces variability and improves reproducibility across preclinical and clinical studies.
- Informs rational design of nanoparticle surface modifications, targeting strategies, and drug delivery systems.
- Helps identify potential toxicological risks and organ-specific accumulation patterns early in development.
- Supports multi-modal analytical approaches by providing quantitative benchmarks for validation of imaging and morphological techniques.
- Contributes to standardization of nanoparticle characterization protocols across laboratories.
- Enables comparison of different nanoparticle types, formulations, and delivery strategies for optimization.

5.2. Gaps & Future Directions:

- Need for standardized, validated analytical workflows.
- Exploration of non-invasive, *in vivo* quantification techniques.
- Development of high-throughput methods for multi-nanoparticle systems.

6. CONCLUSION

This review provides a comprehensive overview of current methodologies for quantifying nanoparticles in complex biological matrices using preclinical animal models. Techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Atomic Absorption Spectroscopy (AAS), fluorescence imaging, and electron microscopy are central to these studies, each offering distinct advantages while also presenting inherent limitations. Accurate and reproducible quantification is critical for understanding nanoparticle biodistribution, pharmacokinetics, clearance, and potential toxicity.

6.1. Main Insights and Conclusions:

- Accurate quantification of nanoparticles is essential for evaluating biodistribution, pharmacokinetics, and safety profiles in preclinical models.
- Physicochemical properties of nanoparticles, including size, shape, surface chemistry, and coatings, significantly influence *in vivo* behavior and organ-specific accumulation.
- Combining quantitative techniques (ICP-MS, AAS) with imaging methods (fluorescence imaging, TEM, SEM) provides a more complete understanding of nanoparticle interactions with biological systems.
- Current analytical methods face limitations, such as matrix interferences, sample processing challenges, photobleaching, and limited sampling areas, emphasizing the need for methodological improvements.
- Standardized protocols and multi-modal approaches are necessary to enhance reproducibility and comparability across studies.

6.2. Importance of the Review:

- Highlights current capabilities and limitations of nanoparticle quantification techniques.
- Provides guidance for selecting appropriate analytical methods based on nanoparticle type and research objectives.
- Serves as a resource for improving safety assessment and therapeutic design of nanoparticles in biomedical and environmental applications.

6.3. Recommendations for Future Research:

- Develop non-invasive, real-time detection methods for *in vivo* nanoparticle tracking.
- Standardize sample preparation, measurement protocols, and reporting guidelines across laboratories.
- Integrate multi-modal approaches to capture both quantitative and qualitative aspects of nanoparticles.
- Focus on correlating nanoparticle physicochemical properties with biodistribution, clearance, and potential toxicity to inform safer and more efficient formulations.

REFERENCES

1. Valic, M. S., & Zheng, G. (2019). Research tools for extrapolating the disposition and pharmacokinetics of nanomaterials from preclinical animals to humans. *Theranostics*, 9(11), 3365.
2. Gajdosechova, Z., & Mester, Z. (2019). Recent trends in analysis of nanoparticles in biological matrices. *Analytical and Bioanalytical Chemistry*, 411(19), 4277-4292.
3. Monikh, F. A., Chupani, L., Vijver, M. G., Vancová, M., & Peijnenburg, W. J. (2019). Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco) toxicological perspective: old challenges, new methods and techniques. *Science of The Total Environment*, 660, 1283-1293.
4. Berger, S., Berger, M., Bantz, C., Maskos, M., & Wagner, E. (2022). Performance of nanoparticles for biomedical applications: The in vitro/in vivo discrepancy. *Biophysics Reviews*, 3(1).
5. Fornaguera, C., & Solans, C. (2017). Methods for the in vitro characterization of nanomedicines—biological component interaction. *Journal of personalized medicine*, 7(1), 2.
6. Nguyen, N. H., & Falagan-Lotsch, P. (2023). Mechanistic insights into the biological effects of engineered nanomaterials: a focus on gold nanoparticles. *International Journal of Molecular Sciences*, 24(4), 4109.
7. Zhu, D., Long, Q., Xu, Y., & Xing, J. (2019). Evaluating nanoparticles in preclinical research using microfluidic systems. *Micromachines*, 10(6), 414.
8. Wang, Y., Xiao, Z., Wang, Z., Lee, D., Ma, Y., Wilhelm, S., ... & Jiang, W. (2025). Multi-omics approaches to decipher the interactions of nanoparticles and biological systems. *Nature Reviews Bioengineering*, 3(4), 333-348.
9. Pandey, R. P., Vidic, J., Mukherjee, R., & Chang, C. M. (2023). Experimental methods for the biological evaluation of nanoparticle-based drug delivery risks. *Pharmaceutics*, 15(2), 612.
10. Vashishat, A., Patel, P., Das Gupta, G., & Das Kurmi, B. (2024). Alternatives of animal models for biomedical research: a comprehensive review of modern approaches. *Stem Cell Reviews and Reports*, 20(4), 881-899.
11. Arruda, S. C. C., Silva, A. L. D., Galazzi, R. M., Azevedo, R. A., & Arruda, M. A. Z. (2015). Nanoparticles applied to plant science: a review. *Talanta*, 131, 693-705.
12. Moudikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. *Nanoscale*, 10(27), 12871-12934.

13. Tripathi, D., Pandey, P., Sharma, S., Rai, A. K., & BH, M. P. (2024). Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity. *BioImpacts*: BI, 15, 30573.
14. Takáč Jr, P., Michalková, R., Čižmáriková, M., Bedlovičová, Z., Balážová, Ľ., Laca Megyesi, Š., ... & Takáč Sr, P. (2025). Do We Know Enough About the Safety Profile of Silver Nanoparticles in Oncology? A Focus on Novel Methods and Approaches. *International journal of molecular sciences*, 26(11), 5344.
15. Wang, Q., Li, S., Chen, J., Yang, L., Qiu, Y., Du, Q., ... & Dong, Y. (2023). A novel strategy for therapeutic drug monitoring: Application of biosensors to quantify antimicrobials in biological matrices. *Journal of Antimicrobial Chemotherapy*, 78(11), 2612-2629.
16. Chen, Y., Alba, M., Tieu, T., Tong, Z., Minhas, R. S., Rudd, D., ... & Elnathan, R. (2021). Engineering micro-nanomaterials for biomedical translation. *Advanced NanoBiomed Research*, 1(9), 2100002.
17. Cahuzac, H., & Devel, L. (2020). Analytical methods for the detection and quantification of ADCs in biological matrices. *Pharmaceuticals*, 13(12), 462.
18. Priem, B., Tian, C., Tang, J., Zhao, Y., & Mulder, W. J. (2015). Fluorescent nanoparticles for the accurate detection of drug delivery. *Expert Opinion on Drug Delivery*, 12(12), 1881-1894.
19. Fernández-Trujillo, S., Jiménez-Moreno, M., Ríos, Á., & Martín-Doimeadios, R. D. C. R. (2021). A simple analytical methodology for platinum nanoparticles control in complex clinical matrices via SP-ICP-MS. *Talanta*, 231, 122370.
20. Mattarozzi, M., Suman, M., Cascio, C., Calestani, D., Weigel, S., Undas, A., & Peters, R. (2017). Analytical approaches for the characterization and quantification of nanoparticles in food and beverages. *Analytical and bioanalytical chemistry*, 409(1), 63-80.
21. Laborda, F., Bolea, E., Cepriá, G., Gómez, M. T., Jiménez, M. S., Pérez-Arantegui, J., & Castillo, J. R. (2016). Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. *Analytica chimica acta*, 904, 10-32.
22. Titus, D., Samuel, E. J. J., & Roopan, S. M. (2019). Nanoparticle characterization techniques. In *Green synthesis, characterization and applications of nanoparticles* (pp. 303-319). Elsevier.
23. Modena, M. M., Rühle, B., Burg, T. P., & Wuttke, S. (2019). Nanoparticle characterization: what to measure?. *Advanced Materials*, 31(32), 1901556.
24. Gondikas, A., von der Kammer, F., Kaegi, R., Borovinskaya, O., Neubauer, E., Navratilova, J., ... & Hofmann, T. (2018). Where is the nano? Analytical approaches for the detection and quantification of TiO₂ engineered nanoparticles in surface waters. *Environmental Science: Nano*, 5(2), 313-326.
25. Gupta, P., Rai, N., Verma, A., & Gautam, V. (2024). Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. *Medicinal Research Reviews*, 44(1), 138-168.
26. Ye, Y., Cota-Ruiz, K., Cantu, J. M., Valdes, C., & Gardea-Torresdey, J. L. (2021). Engineered nanomaterials' fate assessment in biological matrices: Recent milestones in electron microscopy. *ACS Sustainable Chemistry & Engineering*, 9(12), 4341-4356.
27. Bian, J., Gobalasingham, N., Purchel, A., & Lin, J. (2023). The power of field-flow fractionation in characterization of nanoparticles in drug delivery. *Molecules*, 28(10), 4169.

28. Akhter, M. H., Khalilullah, H., Gupta, M., Alfaleh, M. A., Alhakamy, N. A., Riadi, Y., & Md, S. (2021). Impact of protein corona on the biological identity of nanomedicine: understanding the fate of nanomaterials in the biological milieu. *Biomedicines*, 9(10), 1496.

29. Bundschuh, M., Filser, J., Lüderwald, S., McKee, M. S., Metreveli, G., Schaumann, G. E., ... & Wagner, S. (2018). Nanoparticles in the environment: where do we come from, where do we go to?. *Environmental Sciences Europe*, 30(1), 6.

30. Havelikar, U., Ghorpade, K. B., Kumar, A., Patel, A., Singh, M., Banjare, N., & Gupta, P. N. (2024). Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. *Discover Nano*, 19(1), 165.

31. Wong, A. D., Ye, M., Ulmschneider, M. B., & Searson, P. C. (2015). Quantitative analysis of the enhanced permeation and retention (EPR) effect. *PloS one*, 10(5), e0123461.

32. Montiel Schneider, M. G., Martín, M. J., Otarola, J., Vakarelska, E., Simeonov, V., Lassalle, V., & Nedyalkova, M. (2022). Biomedical applications of iron oxide nanoparticles: current insights progress and perspectives. *Pharmaceutics*, 14(1), 204.

33. Greening, D. W., Xu, R., Gopal, S. K., Rai, A., & Simpson, R. J. (2017). Proteomic insights into extracellular vesicle biology—defining exosomes and shed microvesicles. *Expert review of proteomics*, 14(1), 69-95.

34. Abreu, T. R., Biscaia, M., Gonçalves, N., Fonseca, N. A., & Moreira, J. N. (2021). In vitro and in vivo tumor models for the evaluation of anticancer nanoparticles. In *Bio-Nanomedicine for Cancer Therapy* (pp. 271-299). Cham: Springer International Publishing.

35. Chen, D., Ganesh, S., Wang, W., & Amiji, M. (2017). Plasma protein adsorption and biological identity of systemically administered nanoparticles. *Nanomedicine*, 12(17), 2113-2135.

36. Shikha, D., Singh, A., Rangra, N. K., Monga, V., & Bhatia, R. (2024). Insights to therapeutic potentials, pharmaceutical formulations, chemistry and analytical methods of catechin. *Phytochemistry Reviews*, 23(5), 1557-1598.

37. Carolina Alves, R., Perosa Fernandes, R., Fonseca-Santos, B., Damiani Victorelli, F., & Chorilli, M. (2019). A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. *Critical reviews in analytical chemistry*, 49(2), 138-149.

38. Qamar, W., Gulia, S., Athar, M., Ahmad, R., Imam, M. T., Chandra, P., ... & Rahman, S. (2024). An insight into impact of nanomaterials toxicity on human health. *PeerJ*, 12, e17807.

39. Wang, L., Quine, S., Frickenstein, A. N., Lee, M., Yang, W., Sheth, V. M., ... & Wilhelm, S. (2024). Exploring and analyzing the systemic delivery barriers for nanoparticles. *Advanced functional materials*, 34(8), 2308446.

40. Bandookwala, M., Thakkar, D., & Sengupta, P. (2020). Advancements in the analytical quantification of nitroxidative stress biomarker 3-nitrotyrosine in biological matrices. *Critical Reviews in Analytical Chemistry*, 50(3), 265-289.